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Abstract—AUTOFILTER is a tool for automatically deriv-
ing Kalman filter code from high-level declarative spec-
ifications of state estimation problems. It can generate
code with a range of algorithmic characteristics and for
several target platforms. The tool has been designed
with reliability of the generated code in mind and is able
to automatically certify that the code it generates is free
from various error classes. Since documentation is an
important part of software assurance, AUTOFILTER can
also automatically generate various human-readable doc-
uments, containing both design and safety related infor-
mation. We discuss how these features address software
assurance standards such as DO-178B.
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1. INTRODUCTION

Code to estimate the position and attitude of an air-
craft or spacecraft is one of the most safety-critical parts
of flight software. Moreover, the complex underlying
mathematics and abundance of design details make it
error-prone and reliable implementations costly. Auto-
matic code generation or program synthesis techniques
can help solve this predicament by completely automat-
ing the coding phase. A code generator takes as input
a domain-specific high-level description of a task (e.g.,
a set of differential equations) and produces optimized
and documented low-level code (e.g., C or C++) that
is based on algorithms appropriate for the task (e.g.,
the extended Kalman filter). This automation increases
developer productivity and—in principle—prevents the
introduction of coding errors. Ultimately, however, the
correctness of the generated code depends on the correct-
ness of the generator itself. This dependency has led the
FAA to require that development tools be qualified to the
same level of criticality as the developed flight software
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[14]. Unfortunately, due to their size, complexity, and
dynamic nature, the qualification of advanced code gen-
erators is difficult and expensive, which has severely lim-
ited their application in flight software development [1].

We have thus developed an alternative product-oriented
certification approach that breaks the dependency be-
tween generator correctness and code correctness by
checking each and every generated program individually,
rather than the generator itself. Our approach uses pro-
gram verification techniques based on standard Hoare-
style program logic. It applies rules of the logic back-
wards and computes, statement by statement, logical
formulae or safety obligations which are then processed
further by an automatic theorem prover. To perform this
step automatically, however, auxiliary annotations are
required throughout the code. We thus extend the code
generator to simultaneously synthesize the code and all
required annotations: since the code generator has full
knowledge about the form the code will take and which
property is being checked, it can generate the appropri-
ate annotations. This enables a fully automatic certi-
fication which is transparent to the user and produces
machine-readable certificates showing that the gener-
ated code does not violate the required safety properties.
For DO-178B compliance, this formal certification must
be complemented by various forms of (human-readable)
documentation. We have thus extended our system to
automatically generate these documents, eliminating a
laborious and error-prone step.

Our approach focuses on safety properties, which are
generally accepted as important for quality assurance
and have been identified as important by a recent study
within NASA and the aerospace industry [11]. We
currently handle array bounds, variable initialization,
proper sensor input usage (i.e., all input variables are
used in the computation of the filter output), and ma-
trix symmetry (i.e., covariance matrices are not skewed).
The last two properties are specific to the state esti-
mation domain, and are difficult to check with other
tools. The approach can readily be extended to other
properties required by DO-178B, e.g., numeric under-
flow/overflow.

In this paper we describe the extension of our AUTO-
FILTER [17] state estimation code generator by these cer-
tification techniques. We have applied the extended sys-
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tem to a model taken from the attitude control system
of NASA’s Deep Space I (DS1) mission and to a sim-
ulation for the space shuttle docking procedure at the
International Space Station. These case studies have
demonstrated that the certification approach is feasible
and produces an order of magnitude fewer false alarms
than commercial analysis tools. In Sections 2 and 3 we
give a short overview of the AUTOFILTER system and
different software assurance techniques, respectively. In
Section 4, we describe our overall approach to synthesiz-
ing certifiable code, while we focus in Section 5 on the
automatic generation of human-readable support docu-
mentation. In Section 6 we describe the two certification
case studies in more detail, before we conclude in Sec-
tion 7.

2. AUTOFILTER

AUTOFILTER [17] is a domain-specific program synthe-
sis system that generates customized Kalman filters for
state estimation tasks specified in a high-level notation.
It is implemented in SWI-Prolog [18] and currently com-
prises about 75,000 lines of code. AUTOFILTER’s speci-
fication language uses differential equations for the pro-
cess and measurement models and statistical distribu-
tions to describe the noise characteristics. It also allows
some details of the desired software configuration to be
included, such as update intervals and the number of
time steps. Figure 4 in Section 6 contains as an exam-
ple the specification of the DS1 attitude estimator. Note
that the specifications are fully declarative: they only de-
scribe properties of the problem and configuration con-
straints on the solution but do not contain any low-level
implementation details.

From such specifications, AUTOFILTER derives code im-
plementing the specified task by repeated application of
schemas. A program schema consists of a parameterized
code fragment or template and a set of constraints for-
malizing the template’s applicability to a given task.
Schemas represent the different algorithm families of
the domain such as information filter, Kalman filter,
or particle filter as well as the algorithm alternatives
within each family such as standard, sequentialized, and
Bierman measurement update. The code fragments are
formulated in an intermediate language that is essen-
tially a “sanitized” variant of C (e.g., neither point-
ers nor side-effects in expressions) but also contains a
number of higher-level domain-specific constructs (e.g.,
vector/matrix operations, finite sums, and convergence-
loops). The constraints are formulated in the underly-
ing implementation language (i.e., Prolog) but can use
a number of predefined operations (e.g., to construct
variable declarations) that keep the formulations com-
pact. Schemas can thus be seen as high-level macros
that can be applied to subproblems of a certain struc-
ture. Schema application then roughly corresponds to
macro expansion: when a schema is applied, code is gen-

erated by expanding the template (i.e., instantiating its
parameters) over the problem. However, there are three
major differences. First, the expansion is conditional
and controlled by the constraints; moreover, checking
the constraints can further instantiate the template pa-
rameters. Second, the expansion can have multiple so-
lutions: when different schemas are applicable to the
same problem as for example a linearized Kalman filter
and an extended Kalman filter, AUTOFILTER explores
these choices and generates alternative solutions. Third,
AUTOFILTER can perform substantial symbolic calcula-
tions (e.g., linearization, discretization, Taylor series ex-
pansion) during schema application.

The code fragments resulting from the individual schema
applications are assembled and the resulting code is opti-
mized and then translated into a chosen target platform
(i.e., language and libraries); currently, AUTOFILTER

supports C/C++ (both stand-alone and with the Matlab
and Octave libraries), Ada, and Modula-2. Depending
on the specific platform, the necessary matrix operations
are mapped to library calls or to nested loops. Typically,
the final code is between 300 and 800 lines of C or C++
code including auto-generated comments.

3. SOFTWARE ASSURANCE

Software assurance approaches can be characterized as
process-oriented or as product-oriented. Process-oriented
approaches, which are dominant in safety-critical do-
mains, focus on organizational aspects; they typically
restrict the entire software development process and re-
quire support documentation to show adherence to the
prescribed process model. Product-oriented approaches
focus on the produced artifacts, in particular the source
code. They cover a variety of techniques, ranging from
informal to rigorously formal but typically require the
artifacts to satisfy certain criteria. The two approaches
are not exclusive of each other, and software assur-
ance processes typically include certain product-oriented
steps. Here, we briefly summarize the most common ap-
proaches and techniques.

Process Standards

The most widely used standard in AUTOFILTER’s domain
is laid out by the FAA-mandated DO-178B [14], which
covers all phases of the software development process.
DO-178B specifies that the software must be accom-
panied by various documents (e.g., requirements spec-
ifications, system designs, certification plans, etc.) to
achieve flight certification. The format of these doc-
uments must meet various guidelines; among others,
they must be unambiguous, complete, modifiable, and in
particular traceable. Similarly, system architecture and
source code should be “traceable, verifiable, and consis-
tent”. The notion of traceability thus links the differ-
ent phases and abstraction levels together: system re-
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quirements to software requirements, high-level require-
ments to low-level requirements (i.e., system architec-
ture) to source code, and verification of requirements to
implementation of software requirements (cf. Section 5).
DO-178B does not prescribe how traceability is to be
achieved but requires the design description to address
how the software satisfies the high-level requirements
(including algorithms and data structures, architecture,
I/O, data/control flow, and resource limitations), and
link the rationale for design decisions to safety consider-
ations. DO-178B does not specify detailed checklists for
coding standards, although many common error classes
such as memory corruption, out of bounds errors for ar-
rays and loops, and overflows are highlighted, and it stip-
ulates that unnecessary complexity should be avoided.

Tool Qualification— In contrast to the earlier DO-178A,
DO-178B recognizes code generation and verification
technologies. For tool qualification, DO-178B makes a
distinction between tools which can potentially intro-
duce errors into flight code (i.e., development tools) and
those which cannot (i.e., analysis tools). Development
tools need to be qualified to the same level as the flight
software while analysis tools can be qualified more easily.

Software Assurance Techniques

Testing and Simulation— Testing and simulation are the
two most common (and basic) software assurance tech-
niques. Testing uncovers both implementation and de-
sign errors by executing the software and comparing its
outputs to the expected results. This provides only lim-
ited assurance because it only demonstrates the pres-
ence of errors but not their absence, and because it can
require the code to be modified with instrumentation.
Simulation executes a model of the software and can thus
uncover only design errors. In the state estimation do-
main, filters are typically prototyped and then simulated
in a high-level language like Matlab, in order to check
that the filter converges with results that are within the
desired tolerance, something which is difficult to check
statically.

Code Reviews—Detailed manual code reviews are able to
detect roughly half the defects which are ultimately dis-
covered [12], making them an effective and important
step in software development, despite the fact that they
are very cost intensive and require experienced reviewers
(cf. IEEE 12207, MIL STD 498, or DO-178B). Code re-
views are usually carried out with the help of checklists,
which, however, are not standardized and vary widely
between different application areas, institutions, and re-
viewers. A study in the aerospace industry [12] has re-
sulted in a number of important code properties and es-
timates of how difficult manual checks of each property
are.

Program Analysis—Control-flow and data-flow based pro-
gram analysis techniques were originally developed for
application in compilers but can also be used to iden-
tify (potential) errors in software by automating some
aspects of code reviews, e.g., detecting the use of unini-
tialized variables. More advanced techniques are usually
based on the ideas of symbolic execution and abstract inter-
pretation and use safe and efficient compile-time approx-
imations to compute the set of values or behaviors that
can occur at run time. One of the most advanced static
program analysis tools is PolySpace [13]. It analyzes pro-
grams for compliance with a fixed notion of safety that
includes array bound violations and nil-pointer derefer-
ences, and marks unsafe and potentially unsafe program
locations in a marked-up browsable format, thus provid-
ing a limited form of documentation.

Model Checking— Model checking exhaustively explores
the space of transitions between different program states
and checks whether this state space is a logical model for
a given formula. It is particularly well-suited to finding
concurrency errors caused by unexpected interleavings
of different program threads, such as deadlocks, because
it allows a concise formulation and efficient checking of
concurrency properties using temporal logics. Early ap-
proaches such as Spin [8] used separate modeling lan-
guages but modern software model checkers like JPF [16]
work directly on the program code and can thus be con-
sidered as an advanced program analysis technique.

Program Verification— In principle, axiomatic program
verification techniques offer the highest level of assurance
because they construct a detailed mathematical proof of
the functional correctness of the software. They apply
the inference rules of a program logic to the program
and construct a number of logical formulae or proof obli-
gations, whose validity imply the correctness of the pro-
gram. In practice, however, program verification has a
number of severe limitations. First, it requires detailed
specifications of the program behavior which need to be
supplied the developers. Second, the correctness can
only be shown with respect to the specification. If the
specification contains errors or is incomplete, the assur-
ance provided by the proof can be treacherous. Third, it
can produce a large number of proof obligations. Check-
ing their validity requires the application of theorem
proving tools which are knowledge- and labor-intensive.

4. SYNTHESIZING CERTIFIABLE CODE

Since a code generator is a software development tool,
DO-178B requires its qualification to flight-critical lev-
els before the generated code can be deployed in an air-
craft. The goal of this qualification step is to demon-
strate that the generator cannot introduce errors into
the generated software, which is usually done by showing
that produces correct code for all possible inputs. This
is still a process-oriented assurance approach—it certifies
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the (now fully automated) software development process.
However, this is impractical for a large code generator
like AUTOFILTER that accepts a wide variety of specifi-
cations and can produce a wide range of programs. A
more feasible alternative is to employ a product-oriented
approach and to certify the generated programs individ-
ually.

Certifiable Synthesis Architecture

Formal certification is based on the idea that a mathe-
matical proof of some aspect of a software system can be
regarded as a certificate of correctness which can be sub-
jected to external scrutiny. It is a limited variant of full
program verification because it only proves individual
properties and not the complete behavior, but it uses the
same underlying technology. A certifiable program syn-
thesis system generates and formally certifies code. Our
system comprises a number of different components, as
shown in Figure 1. At its core is the original synthe-
sis system. This is extended with a verification condi-
tion generator (VCG), simplifier (for the generated ver-
ification conditions), and an automated theorem prover
(ATP). These components are described below and in
more detail in [3], [4], [5].

As in standard in proof carrying code [10], the architec-
ture distinguishes between trusted and untrusted com-
ponents, shown in Figure 1 in red (dark grey) and
blue (light grey), respectively. Components are called
trusted—and must thus be correct—if any errors in them
can compromise the assurance provided by the overall
system. Untrusted components, on the other hand, are
not crucial to the assurance because their results are
double-checked by at least one trusted component. In
particular, the correctness of the certification system
does not depend on the correctness of the two largest
components: the synthesizer, and the theorem prover;
instead, we need only trust the safety policy, the VCG,
and the proof checker.

Our certification approach works on the source code level
but the complete certification chain should properly go
down to the object code level. This can be achieved by
coupling our system with a certifying compiler [10], [15]
to ensure that the compilation step does not compromise
the demonstrated safety policy.

Safety Policies

The certification tool automatically certifies that a gen-
erated program complies with a given safety policy. This
is a formal characterization that the program does not
“go wrong”, i.e., does not violate certain conditions.
These conditions are defined by a set of logical rules
and auxiliary definitions, the formal basis of which is
explored in [3].

A key feature of our approach is that policies for different
areas of concern are kept distinct, rather than amalga-
mated into a single logical analysis. This is a conse-
quence of the logical framework, but, more importantly,
it enables a separation of concerns: different policies can
be mixed and matched as appropriate to the certification
effort at hand. Since the safety policies are defined in an
explicit and declarative way, the system is also extensible:
users can define new policies, or modify existing ones.

Safety policies exist at two levels of granularity.
Language-specific policies can be expressed in terms of
the constructs of the underlying programming language
itself, e.g., array accesses. They are sensible for any given
program written in the language, regardless of the appli-
cation domain. Various coding standards (e.g., restric-
tions on the use of loop indices) also fall into this cate-
gory. Domain-specific properties are, in contrast, specific
to a particular application domain and not applicable to
all programs. These typically relate to high-level con-
cepts outside the language (e.g., matrix multiplication).
In principle, they are independent of the target program-
ming language although, in practice, they tend to be be
expressed in terms of program fragments.

We have integrated four different safety policies with
AUTOFILTER so far. Array-bounds safety (array) re-
quires each access to an array element to be within the
specified upper and lower bounds of the array. Variable
initialization-before-use (init) ensures that each variable
or individual array element has been assigned a defined
value before it is used. Both are typical examples of
language-specific properties. Matrix symmetry (symm)
requires certain two-dimensional arrays to be symmetric.
Sensor input usage (in-use) is a variation of the general
init-property which guarantees that each sensor reading
passed as an input to the Kalman filter is actually used
during the computation of the output estimate. These
two examples are specific to the state estimation domain.

Generating Safety Obligations

For certification purposes, the synthesis system annotates
the code with mark-up information relevant to the se-
lected safety policy. These annotations are part of the
schema and thus are instantiated in parallel with the
code fragments. The annotations contain local infor-
mation in the form of logical pre- and post-conditions
and loop invariants, which is then propagated through
the code. The fully annotated code is then processed
by the VCG, which applies the rules of the safety pol-
icy to the annotated code in order to generate the
safety conditions. As usual, the VCG works backwards
through the code and safety conditions are generated at
each line. The VCG has been designed to be “correct-
by-inspection”, i.e., to be sufficiently simple that it is
straightforward to see that it correctly implements the
rules of the logic. Hence, the VCG does not implement
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Figure 1. Certifiable program synthesis: System architecture

any optimizations, such as structure sharing on verifi-
cation conditions (VCs) or even apply any simplifica-
tions. Consequently, the generated VCs tend to be large
and must be simplified separately; the more manage-
able simplified verification conditions (SVCs) which are
produced are then processed by an automated theorem
prover (ATP). The resulting proofs can be sent to a proof
checker.

Proof Search and Checking

Essentially, an ATP is a search procedure: it applies
the inference rules of its calculus until it either finds a
proof or fails because none of the rules are applicable. In
order to handle extra-logical operations as for example
the arithmetic functions, the ATP needs an additional
domain theory that specifies their intended meaning as
axioms. The domain theory is a trusted component be-
cause inconsistencies and errors in the axioms can lead
to wrong proofs.

Basic ATPs can be implemented in a few lines of code [2]
and can easily shown to be correct, following the same
“correct-by-inspection” argument as the VCG. However,
the state-of-the-art high performance ATPs in our sys-
tem use complicated calculi, elaborate data structures,
and optimized implementations to increase their power
and obtain fast results. This makes a formal verification
of their correctness impossible in practice. Although
they have been extensively validated by the theorem
proving community, the ATPs thus remain a weak link in
the certification chain. As an alternative to formal ver-
ification, ATPs can be extended to generate sufficiently
detailed proofs which can then be independently checked
by a small and thus verifiable algorithm. This is the
same approach we have taken in extending the synthesis
system to generate annotated code, rather than directly
verifying the synthesizer. Further discussion of this issue
can be found in [4].

Customizability

One of the main advantages of our automated code gen-
erator over commercial tools is the degree to which it
can be customized. Each of the main subsystems can be
tailored and guided in various ways to suit specific ap-
plication requirements. Users can control the code gen-
erator by specifying that particular algorithm schemas
should be used, and that the code be implemented us-
ing one of the target backends. It is also possible to
limit the complexity of the generated code, as required
by DO-178B, either by turning off various optimizations
(common subexpression elimination etc.), or by specify-
ing that loops should be unfolded where possible. This is
similar to the approach taken by the certifying compiler
described in [15], which avoids optimizations altogether.
Users can also specify which of the various intermedi-
ate artifacts generated during synthesis are to appear in
the generated documentation. Finally, the safety docu-
mentation (which is described in Section 5) can be cus-
tomized in different ways, including the customization of
the safety policies.

5. DOCUMENTATION GENERATION

A major drawback of most commercial code generators
becomes apparent when their output needs to be in-
spected or modified: the generated code contains little
documentation. In particular, there is no explanation of
how each of the statements has been generated, what ex-
actly they do, and how they relate to the original input
specification. In AUTOFILTER, the schema-based syn-
thesis approach is used to automatically generate cus-
tomized comments together with the generated code.
Typically, there is about one line of auto-generated com-
ment to every two to three lines of actual code. These
comments describe selected parts of the algorithm, give
detailed derivations of mathematical formulas, and relate
program constructs and variable names back to the spec-
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ification. For this task, AUTOFILTER uses text templates
which are instantiated and composed together with the
code templates.

In addition to the code, AUTOFILTER also generates a
separate documentation suite, which is described below.
It contains a standardized software design document,
safety certification documentation, and hyperlinked doc-
uments to visualize the links between the VCs and the
generated code.

Design Documentation

Most software processes require that a detailed software
design document (SDD) is produced for the software.
The SDD should contain a detailed description of the
software, its interface, special calling conventions, and so
on. Since keeping this document synchronized with the
actual software is a time-consuming and error-prone task
in practice, AUTOFILTER has been extended to automati-
cally generate SDDs together with the code from a single
high-level specification. This eliminates version prob-
lems and inconsistencies between code and documenta-
tion. The format of the SDD follows different NASA and
ANSI standards. It contains an interface description, ad-
ministrative information (names of files, versions, etc.),
specific input and output constraints, and synthesis and
compiler warnings. The document is hyperlinked to the
input specification, the generated code, and any inter-
mediate artifacts generated during synthesis. Figure 2
shows some excerpts from an example SDD. Since the
design document is generated at synthesis time, it is able
to include design details which would be difficult to infer
after the code has been generated.

Safety Documentation

In our formal certification approach evidence for the free-
dom from certain error classes is given as a mathemat-
ical proof. However, these “proofs” are unlikely to be
recognized as such by even a mathematician, since they
consist primarily of the low-level steps carried out by an
automated theorem prover. Moreover, standalone proofs
themselves—even if they are on a higher level of mathe-
matical abstraction—are unlikely to be of much interest
to engineers because they do not explicitly refer back
into the program. What is missing is a trace between
the verification conditions and the program being certi-
fied.

A more general point is that sophisticated analysis tech-
niques need to be balanced with more user-friendly
overviews. The increasing use of theorem provers in both
software and hardware verification presents a problem
for the applicability of formal methods: how can such
specialized tools be combined with traditional process-
oriented development methods?

Figure 2. Generated Software Design Document (excerpts).

We address these issues by combining our documenta-
tion generation with the formal certification. We have
developed a generic framework [6] for generating textual
explanations for why a program is safe. We use the in-
formation obtained from the mathematical analysis of
the software to produce a detailed textual justification
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of compliance with the given safety policy, and trace
these proofs back to the corresponding parts of the pro-
gram. The system is based on customizable explanation
templates which convert logical entities that appear in
the verification conditions, such as safety conditions and
loop invariants, into text. It uses labels which are prop-
agated through the VCG and into the VCs so that the
proofs of safety can explicitly refer back to program com-
ponents. Our framework is generic in the sense that we
can instantiate the system with a range of different safety
policies, and can easily add new policies to the system.
Figure 3 shows an excerpt from an automatically gen-
erated safety document for the array-bounds safety of a
synthesized program.

The access a[a[5]] at line 13 is safe; using the invariant
for the loop at line 9 and the postcondition i=9+1 after the
loop; a[5] is within 0 and 9; and hence the access is within
the bounds of the array a declared at line 1.

Figure 3. Generated explanation for array safety policy

One of the problems is that safety documents can po-
tentially contain a huge amount of information, so it is
essential to focus attention where it is needed. There
are two ways of doing this. First, the user can restrict
attention either to specific program variables or to cer-
tain lines of code so that, in effect, the system does a
slice of the program. Second, the system has a heuristic
ordering of the importance of various pieces of informa-
tion (for example, information which depends on a loop
invariant is more important that that which comes from
an assignment, say) so that the user can set the level of
importance they care about.

Tracing VCs to Code

Our formal certification approach works by applying a
VCG to the generated annotated code, generating a
number of VCs, and then sending them to an automated
theorem prover. A VC can fail to be proven for a number
of reasons. First, there may be an actual safety violation
in the code. Second, the generated annotations may be
insufficient. The schema only contains annotation tem-
plates that are specific to a given safety policy. Third,
the theorem prover may time-out, either due to the size
and complexity of the VC, or due to an incomplete do-
main theory.

The annotations, which consist of pre- and post-
conditions and loop invariants, need to be propagated
throughout the code. Errors can come from any part of
the template, or from the propagation phase: an anno-
tation might not be propagated far enough, or it might
be propagated out of scope. Since the annotations are
automatically generated and propagated, it can thus be
difficult to determine whether and where they must be
modified. If any of these cases happens, debugging an at-

tempted certification by manually tracing the VCs back
to their source is quite difficult. The verification process
is inherently logically complex, and the VCs can be very
large. The VCs go through substantial simplifications,
after which they are typically of the form (see [4]):

hyp1 ∧ · · · ∧ hypn ⇒ conc

where a hypothesis hyp is either a loop invariant, an in-
dex bound, or a propagated assumption, and the conclu-
sion conc is either an annotated assertion or a generated
safety condition. Hence, a single VC can depend on a
variety of information distributed throughout the pro-
gram.

Because of these difficulties, we have implemented an
automated linking feature. The synthesized program is
displayed in a web browser along with its VCs in a sep-
arate frame. Both are hyperlinked so that if the user
clicks on a VC, the lines of program which correspond
to it will be highlighted; similarly, if the user clicks on a
line of the program, the browser displays all the related
VCs. This is achieved with the same approach described
in the previous section: the generated code is marked
up with labels, which are passed through the different
steps of the certification system so that the VCs can re-
fer back to the code. The crucial aspect is to maintain
these labels during the simplification step.

Linking VCs to code is also useful for safe programs.
Indeed, such traceability is an important part of the
assurance provided by the formal certification process,
and directly addresses the tracing from the verification
of requirements to their implementation, as mandated by
DO-178B.

6. CASE STUDIES

We have tested our certifiable synthesis approach in
two different “after-the-fact” case studies, where we re-
created and certified Kalman filters from the require-
ments of existing applications. In the first case study
(ds1), we extracted the mathematical model of the state
estimator from the requirements of the attitude control
system of NASA’s Deep Space I mission and reformu-
lated it as an AUTOFILTER specification, which is shown
in Figure 4. It combines inputs from an inertial measure-
ment unit (IMU) and a star tracker or stellar reference
unit (SRU) to obtain a more accurate estimate of the
attitude of the spacecraft. The estimator has three state
variables representing change in spacecraft attitude since
the last measurement, and three state variables repre-
senting the IMU gyro drift. It models the IMU-readings
f as a driving function in the process model, and only
considers the SRU-readings z as measurements. This is
a standard technique when essentially the same quanti-
ties are read from different sensors [9, Section XI]. For
this specification, AUTOFILTER generates code based on
an extended Kalman filter. A more detailed description
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model ds1.

% Process model: ẋ = Ftx + u
% Process noise: u ∼ N (0,q · I) ⇔ ui ∼ N (0, qi)

const nat n := 6 as ’# state variables’.
data double f(1..3, time) as ’IMU readings’.
double x(1..n) as ’state variable vector’.
double u(1..n) as ’process noise vector’.
double q(1..n) as ’variance of process noise’.
u(I) ˜ gauss(0, q(I)).

equations process_eqs are [
dot x(1) := (hat x(4) - x(4)) - u(1)

+ x(2) * (f(3,t) - hat x(6))
- x(3) * (f(2,t) - hat x(5)),

dot x(2) := ...
dot x(3) := (hat x(6) - x(6)) - u(3)

+ x(1) * (f(2,t) - hat x(5))
- x(2) * (f(1,t) - hat x(4)),

dot x(4) := u(4),
dot x(5) := u(5),
dot x(6) := u(6)

].

% Measurement model: z = x + v
% Measurement noise: v ∼ N (0, r · I) ⇔ vi ∼ N (0, ri)

const nat m := 3 as ’# measurement variables’.
data double z(1..m, time) as ’SRU readings’.
double v(1..m) as ’measurement noise vector’.
double r(1..m) as ’variance of measurement noise’.
v(I) ˜ gauss(0, r(I)).

equations measurement_eqs are [
z(1,t) := x(1) + v(1),
z(2,t) := x(2) + v(2),
z(3,t) := x(3) + v(3)

].

% Filter configuration
const double delta := 1/400 as ’Interval’.
units delta in seconds.
...

estimator ds1_filter.
ds1_filter::process_model ::= process_eqs.
ds1_filter::measurement_model ::= measurement_eqs.
ds1_filter::steps ::= 24000.
ds1_filter::time ::= t.
ds1_filter::update_interval ::= delta.
ds1_filter::initials ::= xinit(_).

output ds1_filter.

Figure 4. Example specification for DS1

of the DS1 attitude estimator and the code derivation
process can be found in [17]; note, however, that AUTO-
FILTER’s specification language has evolved and the spec-
ifications thus differ slightly. The second case study
(iss) was taken from a simulation from the space shuttle
docking procedure at the International Space Station, for
which a different configuration of an extended Kalman
filter is generated.

Table 1 summarizes the number of verification condi-
tions and the proof efforts involved in certifying the two
extended Kalman filters generated from the ds1- and
iss-specifications for the four different safety policies
described in Section 4. The lines of code (LoC) are bro-
ken down into lines of (executable) code and lines of an-
notations. The time Tsynth to synthesize the code and the

Table 1. Certification results and times (same algorithm,
different policies)

Spec. Policy LoC Tsynth #VC Tproof

ds1 array 438 + 0 6.7 1 0.8
init 438 + 84 10.4 74 79.1

in-use 438 + 58 7.6 21 254.5
symm 444 + 77 68.1 865 838.7

iss array 788 + 0 31.2 4 3.5
init 788 + 88 39.1 71 85.7

in-use 788 + 62 32.3 1 34.2
symm 799 + 79 65.8 480 528.6

Table 2. Certification results and times (same policy,
different algorithms)

Spec. Alg. LoC Tsynth #VC Tproof

ds1 par 438 + 0 6.7 1 0.8
seq 484 + 0 8.4 1 0.7

bier 589 + 0 29.0 6 5.0
iss par 788 + 0 31.2 4 3.5

seq 808 + 0 32.8 3 2.6
bier 891 + 0 66.4 9 7.9

time Tproof to prove the VCs using the automated theorem
prover (e-setheo) are measured on a 2.4GHz standard
PC.

It can be seen that the proportion of annotations to
executable code and consequently the number of VCs,
varies widely depending on the safety policy. Language-
specific policies tend to be easier than domain-specific
ones, which require more detailed annotations. The com-
plexity of the generated VCs is well within the capabili-
ties of current ATPs. For three of the four policies (array,
init, and symm) e-setheo was able to discharge all obli-
gations with average proof times of approximately one
second. For the in-use policy, the system produces one
unprovable obligation for each of the programs, which
take much longer to detect and thus distort the average
and total proof times. However, it is important to no-
tice that unprovable obligations do not necessarily imply
that the programs will fail but rather indicate problems
that require more detailed human scrutiny. Here, the
unprovable obligations are a consequence of the conser-
vative way the in-use safety policy is formulated.

In Table 2, in contrast, we compare the effort in certi-
fying three algorithmic variants of the extended Kalman
filters generated from these two specifications, for a sin-
gle safety policy (array). These variants differ in how
the measurement update is implemented. par refers to
the default algorithm generated by our system, where
the updates of the filter loop are expressed in terms of
matrix operations and, in effect, take place in parallel.
In seq, however, the measurements are processed se-
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quentially, one at a time, which is possible when the
measurements are not correlated. This is more efficient
since matrix inverses can then be avoided. bier also
processes the measurements sequentially, but uses the
Bierman update [7]. This is an example of a square-root
filter, where UD decomposition of the covariance matrix
is used to minimize error propagation. The Bierman up-
date is more algorithmically complex and so produces a
greater number of proof obligations. Again, e-setheo was
able to discharge all VCs easily.

7. CONCLUSIONS

We have described our state-of-the-art AUTOFILTER pro-
gram synthesis system. It uses a novel combination
of synthesis, verification and documentation for ultra-
reliability and has been designed so that the certification
subsystem is an integral part of the entire synthesis sys-
tem. We believe that documentation and certification
capabilities such as this are essential for formal tech-
niques to gain acceptance, and provide an approach to
merging automated certification with traditional certifi-
cation procedures.

For future work, in addition to continually increasing
the system’s synthesis power (with more algorithmic
schemas, more specification features, and allowing more
control over the derivation), we plan to extend it in two
main areas.

First, we are developing a more declarative and explicit
modeling style. Much of the domain knowledge used by
the system in deriving code is currently implicit; by mak-
ing it explicit this can be used to (among other things)
facilitate traceability between the code and its derivation
in the generated documentation.

Second, we continue to extend the certification power of
the system (with more policies, more automation, and a
more integrated approach to the documentation gener-
ation subsystems). We are also investigating a software
certificate management system, which will keep track of
the information used during certification, and will enable
and then record audits of the software certificates.
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